
BARC0141: Built Environment Dissertation

”Structurally-driven Self-Reconfiguration: Towards
Structurally-aware Assemblies of Modular Robots”

by

Sofia Feist

19162387

September 2020

Word Count: 10 685

Dissertation submitted in part fulfilment of the
Degree of Master MSc Architectural Computation

Bartlett School of Architecture
University College London

MSc/MRes Architectural Computation Dissertation
Submission Form

A signed and dated copy of the following MUST be inserted after the title page of your
dissertation. If you fail to submit this statement duly signed and dated, your submission will not
be accepted for marking.

1. DECLARATION OF AUTHORSHIP

I confirm that I have read and understood the guidelines on plagiarism, that I
understand the meaning of plagiarism and that I may be penalised for submitting work
that has been plagiarised.

I certify that the work submitted is my own and that it has been also submitted
electronically and that this can be checked detection service, Turnitin®.

I declare that all material presented in the accompanying work is entirely my own work
except where explicitly and individually indicated and that all sources used in its
preparation and all quotations are clearly cited.

Should this statement prove to be untrue, I recognise the right of the Board of
Examiners to recommend what action should be taken in line with UCL’s regulations.

2. COPYRIGHT

The copyright of this report remains with me as its author. However, I understand that
a copy may be given to my funding body (alongside limited feedback on my academic
performance). A copy may also be given to any organisation which has given me
access to data and maps (if requested and if appropriate).

I also understand that a digital copy may be deposited in the UCL public access
repository and copies may be available on the UCL library bookshelves.

Please write your initials in the box if you DO NOT want this report to be made available publicly
either electronically or in hard copy.

□
Name: Sofia Feist

Signed:

Date: 14 September 2020

ACKNOWLEDGEMENTS

I would like to express my heartfelt gratitude to my supervisor, Valentina Soana, for all the

patience and guidance she provided me throughout the writing of this thesis.

To my family for their unwavering support and helping me focus on my thesis throughout

these difficult times.

Finally, to Carmo Cardoso and Teresa Neto for their advice and encouragements to do my

best.

III

ABSTRACT

Self-Reconfigurable Robots have shown great versatility and promise for building dynamic and

self-adapting structures of modular robots. Unfortunately, the structural requirements for

building structurally-sound robotic structures of modular robots at the architectural scale,

where structural performance and stability of the assembly are crucial for success, have yet to

be properly addressed.

This thesis addresses these requirements and proposes a structurally-driven control

strategy for a self-reconfigurable robotic system based on the structural analysis and

performance of not only the final target configuration of a robotic assembly but also of the

intermediate transitional configurations achieved during self-reconfiguration. To formulate a

structurally feasible target shape, a topology optimization is used to evolve the target shape

based specific boundary and loading conditions and to maximize structural stiffness.

Thereafter, the control strategy drives the modules’ decision-making process using three

fitness criteria for action selection: modules’ convergence towards the given target

configuration, stability of the overall assembly, and the structural performance of the assembly.

While the proposed control strategy succeeds in filtering out unstable and structurally unsafe

configurations, corrective measures fail in completely dealing with a declining structural

performance. Nevertheless, this thesis exposes some of the difficulties in using local

decision-making to solve global structural issues and extends the state-of-art on

structurally-aware self-reconfigurable robots.

Keywords: Modular Robotics, Self-Reconfigurable Robots, Structurally-aware robots,

Robotic-Assembled Structures

IV

TABLE OF CONTENTS

List of Figures VI

List of Tables VII

List of Abbreviations VIII

1 Introduction 1

1.1 Objectives and Contribution .. 2

1.2 Structure... 2

2 Self-Reconfigurable Robotic Systems 4

2.1 Classification and existing Self-Reconfigurable Robotic Systems 5

2.1.1 Chain-based Systems ... 5

2.1.2 Lattice-based Systems ... 6

2.1.3 Hybrid Systems ... 8

2.2 Self-Reconfiguration .. 9

2.2.1 Control of Self-Reconfigurable Robots.. 10

2.3 Summary... 11

3 Discrete Assemblies of Modular Robots 13

3.1 Structural Performance of Discrete Robotic Assemblies .. 13

3.2 Assembly Planning of Discrete Assemblies.. 14

3.3 Related Work on Structurally-driven Robotic-Assemblies....................................... 15

3.4 Summary... 15

4 Structurally-driven Self-Reconfiguration 16

4.1 Research Plan and Methodology .. 16

4.2 Implementation ... 17

4.2.1 Target Shape Optimization .. 17

4.2.2 Module Design and Motion Control ... 18

4.2.3 Action Analysis and Fitness .. 22

4.2.4 Action Selection .. 25

4.2.5 Rigid-body Simulations .. 26

4.3 Summary... 26

5 Results 27

5.1 Goal shape Optimization ... 27

5.2 Reconfiguration Sequence ... 29

5.3 Discussion ... 37

6 Conclusion 39

Bibliography 46

V

LIST OF FIGURES

Figure 1.1 Ant-assembled Structures.. 1

Figure 2.1 Chain-based Robots... 6

Figure 2.2 Lattice-based Robots ... 7

Figure 2.3 Hybrid Robots ... 8

Figure 2.4 Problematic Subconfigurations .. 10

Figure 3.1 Module Displacement in Robotic Assemblies .. 14

Figure 4.1 Workflow.. 17

Figure 4.2 Topology Optimization Conditions .. 18

Figure 4.3 Module Degrees of Freedom.. 18

Figure 4.4 Module Motion criteria .. 19

Figure 4.5 Meta-module pair-wise motion... 19

Figure 4.6 Checkerboard Grid Space .. 20

Figure 4.7 Local Neighbourhood of a module ... 20

Figure 4.8 Rule X90 with a North Pivot... 22

Figure 4.9 Action Selection Process.. 22

Figure 4.10 Attraction Gradients .. 23

Figure 4.11 Stability Analysis ... 24

Figure 4.12 Footprint Area of the robot for configurations with two or more support

areas ... 24

Figure 4.13 Analytical model for Structural Analysis.. 25

Figure 5.1 Evolution of the Goal shape during the Topology Optimization................... 28

Figure 5.2 Solid/void ratio variations .. 29

Figure 5.3 Initial and Target Configuration ... 29

Figure 5.4 System Initialization and Module States... 30

Figure 5.5 Scent Propagation... 30

Figure 5.6 Module actions and corresponding fitnesses.. 31

Figure 5.7 Module actions resulting in the same best convergence fitness 31

Figure 5.8 Meta-module reconfiguration Sequence... 32

Figure 5.9 Structural Failures ... 33

Figure 5.10 Reinforcement strategy to reduce structural bending 34

Figure 5.13 A Stranded Module.. 34

Figure 5.11 Reconfiguration sequence according to Convergence 35

Figure 5.12 Reconfiguration sequence according to Convergence and Stability 36

Figure 5.14 A new meta-module rescuing a stranded module and failing to do so.......... 37

VI

LIST OF TABLES

Table 2.1 Overview of existing Self-Reconfigurable Robots.. 11

Table 4.1 Module Local Rules ... 21

Table 4.2 Priority Selection .. 26

VII

LIST OF ABBREVIATIONS

DoF - Degree of Freedom

FEA - Finite Element Analysis

SRR - Self-Reconfigurable Robot

UDP - User Datagram Protocol

VIII

Chapter 1

Introduction

Figure 1.1: Ant-assembled Structures: a) a fire ant tower, b) an army ant bridge, c) an army ant

bivouac, and d) a fire ant raft

Social insects are some of nature most skilled builders. For nesting, ants can build large intricate

structures of tunnels with multiple entrances and chambers while termites can build towering

mounds that can reach up to six or seven meters high, i.e. 600 times the size of the individual

(Theraulaz et al., 1998).

Besides nesting architecture, some species are also capable of building temporary structures

to deal with obstacles and dynamically respond to new threats using the most readily available

buildingmaterial: their own bodies (see Figure 1.1). Army ants can dynamically assemble bridges

and towerswith their bodies allowing them to cross gaps, reach higher places and optimize traffic

flows for foraging and food transportation. In a flood, fire ants can assemble into rafts of up

to 100,000 individuals (Mlot et al., 2012), forming a water-repellent and highly buoyant lattice

that allows them to float and maximize their chances of survival. Both army ants and fire ants

can also build bivouacs, i.e. temporary nests made with their bodies to protect the queen and

their young. These structures are dynamically assembled, responsive to changing conditions and

naturally disassembled when no longer needed.

The complexity of these structures has long since fascinated researchers and scientists, who

marvel at social insects’ ability to collectively coordinate, self-organize and self-assemble without

global communication. In modular robotics, this model of a decentralized system comprised

of several autonomous units capable of dynamic self-adaptation and collective behaviour has

1

1.1. OBJECTIVES AND CONTRIBUTION

inspired engineers to design robotic systems with similar characteristics. Self-Reconfigurable

Robots is one of such systems.

Self-Reconfigurable Robots (SRRs) are robots built from autonomous modules capable of

dynamically changing their own shape by self-organization of its parts. Like ants in a colony,

the individual modules are able to coordinate with their peers and adapt to collaboratively

perform a range of different tasks. SRRs are built for versatility and have a wide range of

possible applications. The one this research focuses on is their ability to dynamically

self-reconfigure into various structures in times of need such as a temporary bridge or a

support structure to hold a collapsing structure, using their constituent modules as building

blocks. In the absence of prior preparation or adequate building materials, using the readily

available modules of a scout SRR to build self-adapting structures might be a major advantage.

1.1. OBJECTIVES AND CONTRIBUTION

In order to be useful at the architectural scale, robotic structures of modular robots need to be

strong and adaptive enough to be able to withstand the internal and external loads resulting

from structural formation and functional use. They also need to be stable throughout all stages

of self-reconfiguration so that they can stand on their own without falling. Unfortunately,

research on SRRs has been mostly focused on the development of cheap and versatile hardware

solutions as well as software strategies for scalable and robust self-reconfiguration; the

structural requirements to build structurally-sound robotic assemblies has yet to be properly

addressed. Moreover, reconfiguration planning strategies rarely address structural issues and

stability of robotic assemblies during self-reconfiguration thus making it difficult to physically

build assemblies of more than a few modules.

To address the above mentioned problems, this thesis proposes a structurally-driven control

strategy for a self-reconfigurable robotic system that can autonomously build

structurally-aware structures. In doing so, it seeks explore how the structural requirements of

building can impact the motion planning of modular robots and promote the construction of

stable and structurally-sound robotic structures at the architectural scale. This strategy is based

on the structural analysis and performance of not only the final target configuration of a

robotic assembly but also of the intermediate transitional configurations achieved during

self-reconfiguration.

This process starts with the formulation of a target configuration using a topology

optimization to obtain a structurally optimized shape based on specific local conditions and

loads. The goal is to find the most effective load-carrying shape for the given conditions that

minimizes the strain energy in the system and maximizes global stiffness.

Once a structurally feasible target shape is found, the control strategy then drives module

actions based on distributed control logic and local decision-making to reach the target

configuration. The decision-making process is based on the analysis of all reachable

configurations of a module according to three fitness criteria: (1) convergence towards the

given target configuration, (2) stability of the overall assembly, and (3) the structural

performance of the assembly. Actions are chosen according the calculated values of the three

fitnesses. By driving self-reconfiguration using real-time structural feedback, unstable and

structurally unsafe configurations can be rejected and corrective measures applied to

compensate declining structural performances.

This research relies on existing analysis and simulation software for structural analysis and

stability simulations. Hardware experiments are not considered in the scope of this thesis.

1.2. STRUCTURE

This thesis is organized into 6 chapters, as follows:

2

1.2. STRUCTURE

1. Chapter 1 introduces the problem, motivation, objectives and contributions of the thesis;

2. Chapter 2 explains the fundamentals of SRRs, giving some examples of existing robotic

systems, as well as how self-reconfiguration works, introducing some of the strategies

used to control it;

3. Chapter 3 discusses the structural analysis and assembly planning discrete robotic

assemblies and addresses some of the related work for structurally-driven

self-reconfigurable robotic assemblies;

4. Chapter 4 explains the research methodology and implementation strategies used to

develop the control system and drive the self-reconfiguration process based on structural

feedback;

5. Chapter 5 presents the results of the control strategy and discusses some of the problems

and potential fixes;

6. Chapter 6 presents the conclusions and future work of the research.

3

Chapter 2

Self-Reconfigurable Robotic Systems

SRRs are robots made of autonomous modules capable of changing their own shape, allowing

them to dynamically adapt to different tasks and environments. This ability makes them ideal for

situations where the robot might encounter unexpected obstacles, have to work in unstructured

environments or perform a variety of tasks that are not necessarily known a priori. For example, in

search and rescue situations after a disaster (Yim et al., 2000a), they can reconfigure to squeeze

through tight holes and climb over tall obstacles and reach places that humans cannot. They

can also adapt their locomotion gaits to different types of terrains, e.g. forming a rolling track

gait for flat terrains and high speed and a legged configuration to move through uneven and

debris-filled terrains.

Other possible applications include management of large facilities (Baca et al., 2015),

underwater inspection and monitoring (Christensen et al., 2015), planetary exploration (Yim

et al., 2003), construction of space structures (Shen et al., 2003; O’Callaghan, 2019),

self-assembled structures (Saldana et al., 2017), programmable matter, physical rendering and

even synthetic realities (Goldstein et al., 2005; Bourgeois et al., 2016).

Yim et al. (2007a) define the main motivators of SRRs as:

VERSATILITY Versatility in SRRs pertains to their ability to perform many different tasks in

many different environment. Modules can be connected in various ways and the robot can

reconfigure between a variety of different shapes, allowing them to adapt to their tasks and the

environment.

ROBUSTNESS Robustness derives from the robot’s ability to handle and adapt to hardware

and software failures. In conventional robots, component malfunctions can cause the entire

robot to fail in its task but in SRRs, modules are interchangeable and capable of self-repair. As a

result, the performance of SRRs does not fail catastrophically but declines gracefully with the

number of malfunctioning modules.

LOW-COST Thanks to their modular nature, SRRs can be mass-produced which can reduce

the costs of production when economies of scale come into play. Low-cost can also be

achieved through simplicity in the design of the individual modules as well as through the

reduced computational power needed due to the distributed nature of the modular robots.

Finally, versatility and generality allows SRRs to deal with a variety of different tasks, saving

costs through reuse.

In the following sections, different Self-Reconfigurable Robotic Systems will be presented,

along with some of the methods and algorithmic strategies used to control them.

4

2.1. CLASSIFICATION AND EXISTING SELF-RECONFIGURABLE ROBOTIC SYSTEMS

2.1. CLASSIFICATION AND EXISTING SELF-RECONFIGURABLE ROBOTIC SYSTEMS

Self-Reconfigurable Robotic systems can generally be categorized into 3 types: chain-based,

lattice-based or hybrids of the two. Chain-based systems are systems where modules form

linearly connected (chain-like) or branching (tree-like) bodies and use module coordination to

move with animal-like fluidity. Lattice-based systems are organized into a 2D or 3D lattice of

cells like atoms in a crystal, which modules can navigate through using a cluster-flow
1

style of

locomotion.

Both chain-based and lattice-based systems offer different advantages regarding

locomotion and self-reconfiguration. Chain-based systems are better for locomotion and for

navigating through low obstacles and tunnels, while lattice-based systems are best suited for

self-reconfiguration, building a wider variety structures and climbing over tall obstacles. Hybrid

systems can form both chain and lattice structures and combine the benefits of the two into a

single system: the fluidity of locomotion of chain-based systems and the versatility of

self-reconfiguration of lattice-based systems.

Using this classification, the following sections present several examples of existing

self-reconfigurable robotic systems. These examples do not form an exhaustive survey of all

robotic systems developed until today but provide a comprehensive and sufficiently diverse

overview of the systems developed. For a more extensive survey of SRRs, see Seo et al. (2019),

Chennareddy et al. (2017), or Jinguo et al. (2016). For a review on current robotic trends in

SRRs, see Brunete et al. (2017).

2.1.1. Chain-based Systems

The roots of Self-Reconfigurable Robots can be traced back to 1988 with the introduction of

the Cellular Robot (CEBOT), the first dynamically reconfigurable robot (Fukuda and Nakagawa,

1988; Fukuda and Kawauchi, 1990). The CEBOT proposed the idea of modular robots as cells in

a living organism, capable of self-organizing and adapting to their tasks and environment. While

it could not yet autonomously self-reconfigure on its own, it paved the conceptual groundwork

for Self-Reconfigurable Robots as we know today.

The PolyPod was the first chain-based reconfigurable robot, designed and built by Yim

(1993, 1994a) at Stanford University. It was composed of two types of modules: a rigid cubic

Node module for branching and a Segment module for actuation (see a) in Figure 2.1). The

PolyPod showed the versatility of modular design for different types of locomotion gaits, such

as the Caterpillar, the Snake, the Spider and the Rolling-Track locomotion gaits (Yim, 1994b),

but could also not yet change shape by itself. Years later, its successor, the PolyBot Yim et al.

(2000b), improved on that by introducing autonomous self-reconfiguration via

electromechanical connectors as well as increasing the load carrying capacity of the robot for

object manipulation.

Unlike the CEBOT and PolyPod, CONRO (CONfigurable RObot) (Castano et al., 2000) was

designed on the idea of homogeneity, autonomy, and self-sufficiency of the modules. CONRO

is composed of homogeneous modules consisting of three segments connected in a chain: a

passive connector, a body, and an active connector. Each module is autonomous and

self-sufficient, containing all components and functionalities to continue working when

detached from the main robot. This allows modules to work independently, simplifies the

self-reconfiguration process since all modules work in the exact same way, adds redundancy to

the system, allowing faulty modules to be easily replaced, and increasing the robot’s

robustness. CONRO showed versatility in performing a wide range of locomotion gaits and

self-reconfiguration capabilities. It also introduced a Hormone-inspired algorithm for

synchronization and coordination between independent module (Shen et al., 2000, 2002),

1

Cluster flow is a type of locomotion where modules move one by one from the back of the robot to the front

(Stoy et al., 2010).

5

2.1. CLASSIFICATION AND EXISTING SELF-RECONFIGURABLE ROBOTIC SYSTEMS

Figure 2.1: Chain-based Robots: a) The PolyPod using a Caterpillar locomotion gait (Source: Yim

(1994a)); b) CONRO in a hexapod configuration (Source: Castano et al. (2002)); c)

The CKBot with 3 clusters of 5 modules each reassembling after a disassembly (Source:

Yim et al. (2007b)); d) The second generation of the PolyBot in different locomotion

configurations (Source: Yim et al. (2002)).

which became an important contribution for the distributed control and scalability of

chain-based self-reconfigurable robots.

Finally, the Connector Kinetic roBot (CKBot), also created by Yim et al., was developed with

the focus on self-repair and self-reassembly after an explosive disassembly of the robot due to

an unexpected external force, e.g. an impact (Yim et al., 2007b). The CKBot is also an

heterogeneous robot with different types of modules: two different-shaped actuation modules

with one rotational Degree of Freedom (DoF) each, and several specialized modules which give

the CKBot additional capabilities such as modules with infra-red proximity sensors, a gripper

module, or a camera module. By grouping together clusters of different modules (see c) in

Figure 2.1), the CKBot showed how modules can work collaboratively to self-reassemble after

an explosive disassembly (see video at UPenn (2009)).

2.1.2. Lattice-based Systems

Developed a year after the PolyPod, Fracta (Murata et al., 1994) and the Metamorphic Robot

Chirikjian (1994) were the first SRRs to successfully implement autonomous

self-reconfiguration, without manual human intervention, albeit still only in two dimensions.

Fracta achieved this using only electromagnetic forces for actuation while the Metamorphic

achieved this using mechanical actuation.

The first SRR to achieve the same in three dimensions was the Molecule (Rus and Kotay,

1998). One Molecule module is composed of two ’atoms’ connected by a right-angle rigid bond

with 2 DoFs. With this design, the Molecule showed different types of motion capabilities,

including linear walking, concave and convex transitions of individual modules (Kotay et al.,

6

2.1. CLASSIFICATION AND EXISTING SELF-RECONFIGURABLE ROBOTIC SYSTEMS

Figure 2.2: Lattice-basedRobots: a) Three connected Fractamodules (Source: Murata et al. (1994));

b) Locomomotion of one metamorphic module around another (Source: Pamecha et al.

(1996)); c) Photo of the two connected 3D-Unit modules (Source: Murata et al. (1998));

d)-f) Third generation of the Molecule robot with female/passive (yellow) and male/active

(blue) modules (Source: Rus Robotics Laboratory (2000b)); g) Nine Crystalline modules

(Source: Rus Robotics Laboratory (2000a); h) A Telecube module (Source: Suh et al.

(2002)); i) Two mini Catom Modules (Source: Goldstein et al. (2005)); j)-l) A T structure

obtained by self-disassembly of the Miche Robot (Source: Gilpin et al. (2008)).

1998), stair climbing (Rus and Kotay, 1998) and two types of lattice-based locomotion: a

tumbling algorithm for cluster-flow locomotion and a dynamic rolling gait achieved by

dynamically moving the center of mass of the robot Kotay and Rus (2005). It also introduced

the concept of Scaffolding (Kotay and Rus, 2000), a strategy to simplify self-reconfiguration

planning by introducing a regular structure with tunnels for modules to navigate through.

Like the Molecule, the 3D-Unit (Murata et al., 1998) was another important contribution for

SRRs in three dimensions. However, unlike the Molecule, the 3D-Unit is based on compactness

and spatial symmetry and modules have no locomotion autonomy. Instead, modules use a

pair-wise strategy for self-reconfiguration: since modules have no locomotion capabilities on

their own, they rely on neighbouring modules to act as pivot and carry them around the

structure of modules (Kurokawa et al., 1998). The 3D-Unit also introduced a distributed

self-reconfiguration algorithm for lattice-based systems based on simulated annealing to

achieve convergence (Yoshida et al., 1998), which became one of the first distributed

self-reconfiguration algorithms for SRRs in 3D.

The Crystalline Robot and the Telecubes are two other lattice-based SRR developed by Rus

and Vona (1999) and Suh et al. (2002). Together, they introduced a new self-reconfiguration

approach based onmodule contraction and expansion, the Crystalline Robot in 2 dimensions and

the Telecubes in 3 dimensions: by contracting, two modules can be squeezed into one lattice

cell, which allows a supporting module to be dragged one cell and support the expansion of the

contracted modules to their new cells, moving the structure of modules by one cell.

7

2.1. CLASSIFICATION AND EXISTING SELF-RECONFIGURABLE ROBOTIC SYSTEMS

Both the Catoms (Goldstein et al., 2005) and Miche (Gilpin et al., 2008) explored the use of

SRRs for constructing programmable matter. The Catoms were 44mm-diameter modular robots

capable of 2 dimensional self-assembly using electrostatic forces for locomotion. Miche

explored 3 dimensional self-reconfiguration through self-disassembly, i.e, by disconnecting

unwanted modules from the structure, and letting them fall with gravity.

2.1.3. Hybrid Systems

Figure 2.3: Hybrid Robots: a) The M-TRAN reconfiguring between different locomotion gaits (Source:

AIST); b) ATRON in three different configurations: from left to right, snake, cluster-walk, car

(Source: Østergaard et al. (2006)); c) A SuperBot C-module; d) A SuperBot M-module; e)

Six Superbot modules in a humanoid configuration (Source: Salemi et al. (2006)); f) Two

Molecubes.

In 1999, the M-TRAN (Modular TRANsformer) introduced the idea of a hybrid SRR, capable

of both the 3D self-reconfiguration capabilities of lattice-based systems and the locomotion

capabilities of chain-based systems Murata et al. (2000). One M-TRAN module consists of two

linked semi-cylindrical cubes with one DoF each, allowing them to rotate from -90 to +90

degrees around its axis. M-TRAN showed both lattice-based cluster-flow locomotion and

chain-based locomotion gaits. Regarding the former, M-TRAN used meta-modules (Yoshida

et al., 2002) and regular structures of modules (Kurokawa et al., 2005) to simplify

self-reconfiguration planning and facilitate cluster-flow locomotion. Regarding the latter, it

introduces a method for the automatic generation of locomotion patterns based on a

generalized Central Pattern Generator network and genetic algorithms to optimize network

parameters for a more dynamic and adaptive locomotion control of modular robots (Kamimura

et al., 2003).

ATRON (Jorgensen et al., 2004) was the second hybrid SRR. One ATRON module has a

spherical design with only one rotational DoF around the module’s central axis. The simplicity

of the ATRON’s modular design showed that self-reconfiguration was possible with minimal

DoFs. It did so by arranging modules’ rotational axes perpendicular to each other (see b) in

Figure 2.3) and using meta-modules to overcome the limitations of the individual modules

(Christensen et al., 2004; Christensen and Stoy, 2006). Similarly, the Molecubes (Zykov et al.,

2007) also explored self-reconfiguration with only one DoF, although they did so to physically

8

2.2. SELF-RECONFIGURATION

demonstrate kinematic self-reproduction.

Inspired by other SRRs such as the M-TRAN and CONRO, the SuperBot (Shen et al., 2006b)

is a hybrid SRR designed for NASA’s space exploration programs and support life on other

planets. Similar to the M-TRAN module, a SuperBot module consists of two semi-cylindrical

cubes bonded together, with an additional DoF that allows the bond itself to rotate in both

directions. By rotating the middle bond by 90º, the M-TRAN-like module (called ”M-module”,

see d) in Figure 2.3) becomes similar to a CONRO module (called “C-module”, see c) in Figure

2.3), capable of performing pitching and yawing motion. All electronics and mechanical

components are internally protected from possible dust, moisture, and physical impact. Overall,

SuperBot showed capable of self-reconfiguration and manipulation tasks as well as multiple

modes of locomotion, including on uneven and challenging terrains such as climbing a sand

dune (Shen et al., 2006a, 2008).

2.2. SELF-RECONFIGURATION

The main advantage of SRRs is that they can self-reconfigure and, thus, adapt to different tasks,

environments and situations. However, self-reconfiguration is a complex problemwith no simple

or general way to solve it (Christensen et al., 2004).

Self-reconfiguration allows a robot to change shape which involves a sequence of module

movements until a target shape, designed to deal with a specific task, is reached. There are

several reasons that make self-reconfiguration a complex and challenging process. The first and

most obvious is that, in SRRs, instead of controlling a single robot, we need to control and

coordinate several autonomous modules, sometimes including heterogeneous modules with

different roles and control strategies.

Usually, modular robots have aminimalistic hardware design and functionality to allow cheap

production, which consequently puts heavy constraints on their ability to move and interact

with the environment. As a result, a very simple move might require a series of complicated

intermediate steps to work around the motion limitations of individual modules. Usually, strong

coordination and synchronization between modules is required to accomplish any given task.

This coordination is also needed to avoid collision between multiple modules potentially moving

at the same time.

Secondly, it is important that modules remain connected during self-reconfiguration to

maintain electronic communications between modules but also so that no module becomes

stranded or left behind and unsupported modules do not fall off the robot. Fallen modules

might break upon impact and stranded modules might be unable to autonomously return to

the main body. This problem might not be trivial to detect and solve (Stoy et al., 2010).

Thirdly, if a self-reconfiguration sequence is not carefully planned, modules might get stuck

in hollows, solid subconfigurations, local minima or leave unfillable holes in the robot. Hollows

refers to holes in the goal configuration inside whichmodules can get stuck, leaving them unable

to exit and complete the self-reconfiguration process. Similarly, solid subconfigurations refers to

modules getting stuck on the outside of the goal configuration, unable to fill holes on the inside.

Local minima refers to when modules following the most direct path to the goal get stuck in

configurations fromwhich they cannot escape, due to either problems in the self-reconfiguration

sequence or motion constraints. Finally, motion constraints might also make modules unable to

reach certain positions, leaving holes in the final goal shape, impossible to be filled (Tucci et al.,

2018). These problems are illustrated in Figure 2.4.

9

2.2. SELF-RECONFIGURATION

Figure 2.4: Problematic subconfigurations where modules might get stuck: a) Hollow, b) Solid, c)

Local Minima

These issues stress the need for strong control and careful planning of SRRs. Thus, a variety of

methods have been developed to control and plan the self-reconfiguration process. The following

section will briefly discuss some of these methods. For a more extensive review of the methods

and algorithms used to control SRR, see Ahmadzadeh and Masehian (2015).

2.2.1. Control of Self-Reconfigurable Robots

Control in SRRs generally falls into one of two categories: centralized control and distributed

control. In centralized control, a single controller is responsible for managing all of the modules.

The state of the whole system is known to the centralized controller, which coordinates all

module movements and allocates individual tasks for the global execution of the given task.

Centralized approaches typically involve graph-based and path planning approaches (e.g.

Kotay and Rus, 1998; Yoshida et al., 2001). This involves representing the system as a graph of

nodes (representing configurations) and connections (representing module actions) and using

search algorithms to find the most desirable sequence of steps to reach a final goal

configuration. This is not a trivial problem due to the shear amount of possible configurations

in the system, a problem which is only exponentially aggravated by the increase in the number

of modules to manage. In the Metamorphic Robot, Pamecha et al. (1997) address this problem

by introducing heuristics based on simulated annealing to explore the search space and

converge towards the goal configuration. For the I-Cubes, Ünsal and Khosla (2001) use

multilayered planners to divide the motion planning problem into smaller, tractable

sub-problems that can be more easily and quickly solved using heuristic methods.

Unfortunately, centralized approaches are neither scalable nor robust. As the number of

modules increases, so does the complexity and number of actions that the centralized

controller needs to manage and coordinate which can quickly overload the system. Moreover, if

the centralized host fails, so does the entire robot. For these reasons, distributed control is

usually preferred in SRRs.

In distributed control, all modules are equipped with their own individual controller. They can

only perceive part of the system around them and react locally to their surroundings, resulting in

an emergent behaviour. Distributed control is scalable and more robust than centralized control

since all modules function autonomously and do not rely on a centralized controller to operate

but introduces new challenges regarding global coordination and convergence: if modules can

only react locally and autonomously, how can we make the desired global behaviour emerge?

Generally, in a distributed approach, all modules need a behaviour strategy that addresses these

issues.

One way to tackle this is by giving each individual module a set of local rules and a

representation the goal shape. A rule consists of a possible action that a module can take

based on a specific local configuration. For example, Butler et al. (2004) show how

Cellular-Automata-inspired rule sets, based on purely local configuration information, can be

used to generate cluster-flow locomotion.

10

2.3. SUMMARY

Following these rules gives modules a clear movement strategy while the representation of

the goal shape gives them a goal. If modules know their own global position in the configuration

and their goal position, all they need to do is to execute the rules that will bring them closer to

their goal (Christensen and Stoy, 2006). Alternatively, if modules do not know their own global

and goal position, artificial attraction gradients can be used to guide them towards an empty

goal position (Bojinov et al., 2002). In this strategy, one module next to an empty goal cell acts

as the source (the Seed), emitting a virtual ”scent” that is propagated throughout the system,

informing and attracting surrounding modules towards that unfilled position.

A problem with these approaches is that, without global path planning, modules can get

stuck in local minima or other problematic subconfigurations as seen in the previous section.

The introduction of meta-modules (Butler et al., 2004) and scaffolding (Kotay and Rus, 2000)

can help alleviate some of these issues and simplify the self-reconfiguration problem. Finally,

distributed search can also be used to solve small localized problems. Using this strategy,

modules calculate the graph of local reachable positions in the neighbourhood and locate the

most desirable path that will lead them closer to the goal (Christensen, 2006).

2.3. SUMMARY

Name Type 2D/3D DoF Homo/Hetero References

CEBOT Chain 3D Various Heterogeneous Fukuda and Nakagawa (1988)

PolyPod Chain 3D 2 Heterogeneous Yim (1993)

Fracta Lattice 2D 0 Homogeneous Murata et al. (1994)

Metamorphic Lattice 2D 3 Homogeneous Chirikjian (1994)

Molecule Lattice 3D 4 Homogeneous Kotay et al. (1998)

3D-Unit Lattice 3D 6 Homogeneous Murata et al. (1998)

Micro-Unit Lattice 2D 2 Homogeneous Yoshida et al. (1999)

Crystalline Lattice 2D 1 Homogeneous Rus and Vona (1999)

I-Cubes Lattice 3D 3 Homogeneous Unsal et al. (1999)

M-TRAN Hybrid 3D 2 Homogeneous Murata et al. (2000)

CONRO Chain 3D 2 Homogeneous Castano et al. (2000)

PolyBot Chain 3D 1 Heterogeneous Yim et al. (2000b)

Telecubes Lattice 3D 1 Homogeneous Suh et al. (2002)

Chobie II Lattice 2.5D 1 Homogeneous Koseki et al. (2004)

ATRON Hybrid 3D 1 Homogeneous Jorgensen et al. (2004)

Catoms Lattice 2D 0 Homogeneous Goldstein et al. (2005)

SuperBot Hybrid 3D 3 Homogeneous Shen et al. (2006b)

Molecubes Hybrid 3D 1 Homogeneous Zykov et al. (2007)

CKBot Chain 3D 1 Heterogeneous Yim et al. (2007b)

Miche Lattice 3D 0 Homogeneous Gilpin et al. (2008)

ModRED Chain 3D 4 Homogeneous Nelson et al. (2010)

Roombots Hybrid 3D 3 Homogeneous Spröwitz et al. (2010)

SMORES Hybrid 3D 4 Homogeneous Davey et al. (2012)

CoSMO Hybrid 3D 1 Homogeneous Liedke et al. (2013)

M-Blocks Lattice 3D 0 Homogeneous Romanishin et al. (2013)

Soldercubes Lattice 3D 1 Heterogeneous Neubert and Lipson (2016)

Table 2.1: Overview of existing Self-Reconfigurable Robots

In this chapter, we saw different self-reconfigurable robotic systems, as well as some of the

methods and strategies used to control them. SRRs can be divided into 3 types. Chain-based

system are better for locomotion, lattice-based systems for self-reconfiguration, while hybrids

11

2.3. SUMMARY

combine the advantages of the two to achieve a system with both good locomotion and self-

reconfiguration capabilities.

SRRs can also be either homogeneous or heterogeneous robots, depending on the type(s)

of modules that they use. Homogeneous modules simplify self-reconfiguration since all modules

are physically and functionally identical and also increases the robustness of the system since

faulty modules can be easily replaceable with any other module in the robot. Homogeneity is

also advantageous for cost and mass production. On the other hand, heterogeneous modules

allows the robot to split components and functionalities among different types of modules as

well as handle specialized modules or tools which can increase the capabilities of the robot. This

however can come at the cost of system robustness and reconfiguration simplicity since we now

have different types of modules to control and keep track of (positions, orientations, and tasks).

Regarding the control of SRRs, the system is centralized if they rely on a single centralized

controller or distributed if each module is equipped with their own controller. Centralized

control achieves better coordination and convergence but lacks in robustness and scalability,

requiring computationally expensive search algorithms to plan module paths. Distributed

control is scalable and more robust but does not guarantee emergence of the desired global

behaviour.

With SRRs, there is no simple and general way to design a self-reconfigurable robotic

system (Yim et al., 2007a) and no SRR yet fully explores the promise of Versatility, Robustness

and Low Cost that have becoming the driving motivator to designing SRR (Stoy et al., 2010).

The potential for self-reconfigurable robots is vast but the field is still young. While the initial

challenges of creating robots capable of self-reconfiguration have been achieved, these

systems have only just matured to a degree where application is possible. Now, more research

is needed towards putting the acquired knowledge into practice, and making SRRs capable of

facing the physical environment.

12

Chapter 3

Discrete Assemblies of Modular Robots

Discrete structures are structures made of discrete blocks stacked and bonded together to form

a whole. In construction, interest in studying discrete structures has beenmainly lead by interest

to study the performance of masonry structures. More recently, advances in digital fabrication

techniques and robotics have enabled the creation of novel and complex discrete assemblies and

have re-wakened the interest in structurally analysing these structures in order to materialize

them.

In modular robotics, assemblies obtained by self-assembly and self-reconfiguration of

modular robots present a unique type of structure since we are not stacking passive building

blocks but active modular robots, which move themselves into their own stacking position.

Nonetheless, structures built by assemblies of modular robots can still be considered

discrete-element structures, since they are made of many discrete modular robots stacked

together and connected to their neighbouring modules by the connectors in their joints.

This chapter will discuss how to study the structural performance and assembly planning of

discrete robotic assemblies, grounded in research of discrete structures. It will also introduce

some relevant related work on structurally-driven self-reconfigured robotic assemblies.

3.1. STRUCTURAL PERFORMANCE OF DISCRETE ROBOTIC ASSEMBLIES

In structural engineering, approaches to studying the structural performance of discrete

structures can generally be categorized into one of two categories: material performance and

geometry performance. Material performance considers material strength and limits under the

influence of stresses in the structure. For example in masonry, these include analysing the

compressive and tensile strength of the bricks and mortar and identifying points of material

rupture in the structure. In contrast, geometry performance considers the stability conditions

of the overall geometry of stacked elements and material failures are not considered (Whiting,

2012).

In modular robotics, material performance considers module and connector strength while

geometry performance considers the overall stability of the robotic assembly. The strength of a

module depends on its design and materials of the module’s shell and internal structure.

Østergaard et al. (2006) show how a Finite Element Analysis (FEA) can be used to calculate the

modulus of elasticity and the yield stress of an ATRON module. On larger assemblies, this

information could be used to identify modules stressed beyond their yield strength.

However, discrete structures are usually weakest at the joints and the same is true for

robotic assemblies of modular robots. The stiffness and cohesion of an assembly of modular

robots is strongly dependent on connector strength which are typically much weaker than

modules’ compressive strength. This in turn depends on the type, material and stiffness of the

connector. For example, magnetic connectors are only as strong as the strength of the

magnetic forces of the magnet while mechanical connectors depend on the design and

13

3.2. ASSEMBLY PLANNING OF DISCRETE ASSEMBLIES

materials of the connection mechanism. Weak connectors can break easily while loose

connectors can cause large module displacements in the structure, as illustrated on the left in

Figure 3.1. To address this, ATRON (right in Figure 3.1) uses aluminium connectors with three

points of contact for stiffer and stronger connectors.

Figure 3.1: Module displacement of (Left) two Roombot modules and (Right) five ATRONmodules

caused by gravity: (Courtesy of BioRobotics Laboratory, EPFL and Østergaard et al.

(2006))

Finally, the stability of the robotic assembly depends on the geometric configuration of the

modules and the conditions of equilibrium. An unstable configuration could make the robotic

assembly fall before the self-reconfiguration process is complete or cause tension forces in the

structure that could put too much strain the connectors. Thus, it’s important to consider both

the stability of the final configuration as well as the stability of intermediate configurations

during self-reconfiguration.

3.2. ASSEMBLY PLANNING OF DISCRETE ASSEMBLIES

In SRRs, it is not enough to simply optimize the structural performance of the static target

structure. During self-reconfiguration, the robotic assembly will transition between a sequence

of geometric configurations until the target structure is reached but if this reconfiguration

sequence is not structurally-feasible, the assembly will never be able to converge into the

desired target configuration. Unfortunately, assembly planning in SRR usually only involves

calculating the sequence of steps modules need to take to self-reconfigure from an initial

configuration to a goal configuration. The global structural performance of the robotic

assembly is not usually considered during the intermediate stages of self-reconfiguration.

In construction, support structures and falsework are usually needed to support the

unfinished structure during assembly. Alternatively, assembly-aware techniques have been

proposed to reduce the need for these support structures. The assembly-by-disassembly

approach is one of them. The idea is that by reversing the process of disassembly (i.e. starting

from the complete structure and removing one block at a time), we can obtain a complete

structurally feasible assembly sequence (Kao et al., 2017).

Another option is to use counterbalancing. This can done by adding material in the opposite

direction of the potential instability, thus using theweight distribution of the structure to provide

stability (Melenbrink et al., 2017).

These methods can be repurposed for the assembly planning of structurally-aware robotic

assemblies.

14

3.3. RELATED WORK ON STRUCTURALLY-DRIVEN ROBOTIC-ASSEMBLIES

3.3. RELATEDWORK ON STRUCTURALLY-DRIVEN ROBOTIC-ASSEMBLIES

As previously mentioned, structural performance and stability conditions of robotic assemblies

are not usually considered during design and self-reconfiguration of modular robots. This section

discusses some of the exceptions to that.

Many works simulate the robot’s physical behaviour under the action of gravity or in

different types of environment, but not a lot of them actively address stability as a driving force

of motion selection and self-reconfiguration. In Ünsal et al. (2000), the I-Cubes’ centralized

motion planner actively addresses the issue of stability by executing a stability analysis of each

action to ensure that a motion step will not cause the robot to overturn. This is achieved by

comparing the location of the robot’s center of gravity on the plane normal to the direction of

gravity with the footprint of the robot, which will be stationary during a projected move. If the

center of gravity falls outside of the robot’s footprint, the configuration is considered unstable

and the action is rejected. Thus, unstable configurations are filtered out of the motion

planning.

White et al. (2010) addresses the structural functional requirements for self-reconfigurable

robotic programmable matter to be usable in the physical world. Connector strength is

recognized as the critical factor in holding the system together and a strength analysis is

proposed based on a 6×6 stiffness matrix of the heterogeneous system, composed of both

rigid and soft connections. They show how heterogeneous stiffness properties displayed by

folded chain structures can be exploited to form structures that best suit a given task.

Similarly, in O’hara et al. (2014), the strength requirements of floating structures assembled

by self-reconfigurable robotic boats in the open ocean are addressed. A simplified wave and

structural strength analysis is presented. The results show that, to conform to the large forces

and moments caused by waves, connection stiffness should vary between modules. To address

that, active stiffness connections are introduced to reduce structural stress when needed.

Finally, in Tolley et al. (2011), both the structural optimization of the target shape and

assembly planning of the optimized shape are addressed in a fluid environment. The target

shape is evolved using evolutionary algorithms to minimize the strain energy in the structures

with FEA. Once a satisfactory shape is found, the structure is assembled using a self-assembling

algorithm based on disassembly: by starting with the final configuration, one cube is removed

at a time until no cubes remain. This sequence is then reversed to achieve a top-down

centralized assembly strategy.

Unfortunately, of the above examples, only the I-Cubes addresses structurally-driven self-

reconfiguration and the structural requirements of human-scale robotic structures on a non-fluid

environment.

3.4. SUMMARY

In their review of the current state-of-the-art of SRRs, Seo et al. (2019) recognize structural

weakness as the main issue of robotic-assembled structures. Unfortunately, the structural

performance of these robotic structures has yet to be properly addressed on a human and

architectural scale, where forces and stability plays a crucial role for a structure’s success.

To address that, this chapter discusses some of the key factors to consider in the structural

study and assembly planning of architectural-scale robotic assemblies, such as module strength,

connector strength and stability, and addresses some of the related work on structurally-driven

robotic assemblies. In doing that, it hopes to equip the reader with the knowledge needed to

address the problem of building structurally-aware robotic-assembled structures.

15

Chapter 4

Structurally-driven Self-Reconfiguration

In the previous chapter, we discussed how the structural performance and assembly planning

of robotic assemblies are crucial for building structurally-aware structures. In this chapter, we

propose structurally-driven control strategy for a self-reconfigurable robotic system based on

the structural analysis and performance of the resulting robotic configurations, both target and

intermediate. The following sections explain the overall methodology of this strategy and the

implementation strategies used to develop the control system and drive the self-reconfiguration

process based on structural feedback.

4.1. RESEARCH PLAN AND METHODOLOGY

In order to build structurally-aware robotic assemblies, a robotic system of modular robots

capable of forming robotic assemblies was developed, which will serve as the test bed for our

implementation. The developed system is based on a lattice architecture with homogeneous,

functionally identical modules. A cubic lattice architecture was chosen for its spatial symmetry

and form-filling properties, which is better for the self-reconfiguration of a wider variety of

structures. The system was designed based on strategies of distributed control and local

interactions to improve scalability and potentially enable the construction of larger assemblies

of modules.

In order to simulate the developed robotic system’s physical behaviour and analyse the

structural performance of the resulting robotic assemblies, two different simulation

environments were used. The first is Unity 3D, which uses the built-in Nvidia PhysX 3.3 physics

engine (NVIDIA, 2020) to simulate the robot’s physical behaviour and validate stability

calculations with rigid-body simulations.

The other simulation environment used was Grasshopper (Davidson, 2020) for structural

analysis and optimization. Grasshopper was chosen due to the variety of complementary

state-of-the-art plug-ins available that allow designers and engineers to analyse and optimize

different types of structures. Specifically, we used tOpos (Białkowski, 2020) for the structural

and topology optimization of the target configuration and then Karamba3D (Karamba3D,

2020) to analyse the resulting structures and provide real-time structural feedback with FEA

during robotic self-reconfiguration.

In order to have a real-time feedback loop for the self-reconfiguration process, these two

environments needed to be tightly connected. To realize that, a User Datagram Protocol (UDP)

connection was developed between Unity and Grasshopper for data exchange. From an initial

configuration, the robot determines the possible actions based on the local configuration and

sends the corresponding geometric data of the resulting configurations to Grasshopper for

structural analysis. The feedback of each action is subsequently used in an action selection

process that determines the next action the robot should take. This selection process is based

on both the structural performance of the robotic configurations as well as convergence

16

4.2. IMPLEMENTATION

Figure 4.1: Self-ReconfigurationWorkflow between Unity and Grasshopper

criteria towards the target configuration. Finally, the chosen action is executed and simulated

in Unity, resulting in a changed configuration. This process is repeated until the target

configuration is reached. This workflow, illustrated in Figure 4.1, allowed us to drive the

self-reconfiguration decision-making process based on structural feedback.

4.2. IMPLEMENTATION

4.2.1. Target Shape Optimization

Before starting the reconfiguration process, we need to make sure that the target

configuration itself is structurally feasible and stable, otherwise the assembly might never be

able to converge into it. To obtain a structurally feasible and optimized target shape, we

perform a topology optimization. Topology optimization aims at finding the optimal solid-void

pattern of material distribution within a given design domain for a given set of load and

boundary conditions (Zhu and Gao, 2016). It uses a FEA to find the most effective load-carrying

paths in a structure and thus the shape that minimizes the strain energy in the system and

maximizes the global stiffness. This can be useful for the robot to dynamically formulate a

target shape that responds to specific on-site load and boundary conditions.

To implement this, we turned to Grasshopper for the tOpos plugin, which uses the Solid

Isotropic Material with Penalty (SIMP) method described in Bendsoe and Sigmund (2013) for

Topology Optimization. To perform the optimization, we need a boundary domain, support

conditions, load conditions and a resolution. The boundary domain defines the boundary space

within which the structure should be contained. The support conditions define the area and

conditions of support of the structure while the load conditions define the loads the structure

will be subjected to. Finally, the resolution is used to discretize the domain space into a

voxelized space of nodes and elements to perform the FEA. By matching the resolution size to

the module size (5cm for the developed module), we can use this voxelized space to directly

obtain the modules’ distribution in the domain. Karamba is then used to verify the performance

of the resulting shape.

17

4.2. IMPLEMENTATION

Figure 4.2: Toperformthe TopologyOptimization,weneedaboundarydomain (light grey volume),

the support conditions (dark grey areas) and the load conditions (red arrow). The

resolution defines the scale and discretization of the space for the analysis.

Once a target shape is found, each module is given a representation of this shape in the

form of a list of goal cell coordinates. This list can be used for modules to check the location

of target cells in the vicinity as well as in relation to their own position. Once this is done, the

reconfiguration process can now start.

4.2.2. Module Design and Motion Control

The design of the developed modular robots was inspired by the 3D-Unit SRR (Murata et al.,

1998). Eachmodule has 3 rotational DoFs in orthogonal directions that allowmodules to perform

± 90º degree rotations around the center, as shown in Figure 4.3.

This design imposes a few motion constraints on self-reconfiguration: since modules have

no autonomy of movement, they have to be carried by a neighbouring module, which we call

the Pivot, in a rotating motion. Moreover, to support the pivot’s rotating motion, at least one

Support module is needed to fix the pivot’s axis of rotation. These motion constraints are

illustrated in Figure 4.4.

Figure 4.3: Module design and degrees of freedom

18

4.2. IMPLEMENTATION

Figure 4.4: Module motion criteria: To perform any motion, a module needs a Pivot module to carry it

and a Support module in the direction of the axis of rotation to support the rotating pivot

To reduce some of the difficulties imposed by these motion constrains and facilitate

self-reconfiguration planning, modules always move in meta-modules of two modules, where

one module coordinates with a partner module to mutually move each other around the robotic

assembly (see Figure 4.5). This is done to avoid lone modules getting stuck in configurations

from which they cannot move due to their own motion constraints (e.g., see d) in Figure 4.5).

Figure 4.5: Meta-module pair-wise motion: a)-c): by using each other as pivots, two modules can

coordinate together to move towards their goal positions; d) If by itself, a lone module can

get stuck, unable to move.

Each module is assumed to be equipped with its own controller and to be able to

communicate with its immediate connected neighbors. To sustain larger assembled structures,

a sturdy internal framing and a rigid shell is assumed to increase the modules’ compressive

strength and allow them to support the weight of several other modules. A strong and light

material such as aluminium for the shell and internal structure is considered.

Regarding the connectors, mechanical connectors are usually the strongest and the best

option for increasing connector strength between modules. All six faces of the modules should

have mechanical metallic connectors with three or more points of contact to more evenly

distribute stress between modules and provide stiffer and stronger connections to torques

from all directions. For this robotic design and motion constraints, unisex connectors could

make for a more uniform system but aren’t strictly needed: since modules always move in a

checkerboard grid of cells (see Figure 4.6), having male and female modules with active and

passive connectors could help reduce costs and hardware complexity.

19

4.2. IMPLEMENTATION

Figure 4.6: Modules alwaysmove in a Checkerboard grid of cells: Modules in white cells can never

move into black cells and vice versa.

To make the robotic system more scalable, we use a distributed strategy of motion control

based on local rules for themodules. Asmentioned previously, a rule consists of a possible action

that a module can take based on a specific local neighbourhood (see Figure 4.7). Depending

on the existence and distribution of other modules in this neighborhood, several actions are

possible. In order to be executable, these actions need to comply with the modules’ motion

constraints, i.e. a module needs a pivot and at least one support module to move.

Figure 4.7: The local neighbourhoodofamodule consists of its immediate surroundingneighbours.

For convenience, these are named based on cardinal directions (North, East, South,

West), and their elevation (Up, Bottom) in relation to the given module.

The local rules for our robotic system are as follows:

20

4.2. IMPLEMENTATION

PIVOT LOCATION SUPPORT LOCATION ACTION TARGET CELL

X90 Upper North (UN)

Pivot X-axis

X-90 Bottom North (BN)

Z90 North West (NW)

North (N)

Pivot Z-axis

Z-90 North East (NE)

X90 Bottom South (BS)

Pivot X-axis

X-90 Upper South (US)

Z90 South East (SE)

South (S)

Pivot Z-axis

Z-90 South West (SW)

X90 Upper South (US)

Pivot X-axis

X-90 Upper North (UN)

Y90 Upper East (UE)

Up (U)

Pivot Y-axis

Y-90 Upper West (UW))

X90 Bottom North (BN)

Pivot X-axis

X-90 Bottom South (BS)

Y90 BottomWest (BW)

Bottom (B)

Pivot Y-axis

Y-90 Bottom East (BE)

Y90 Bottom East (BE)

Pivot Y-axis

Y-90 Upper East (UE)

Z90 North East (NE)

East (E)

Pivot Z-axis

Z-90 South East (SE)

Y90 Upper West (UW)

Pivot Y-axis

Y-90 BottomWest (BW)

Z90 South West (SW)

West (W)

Pivot Z-axis

Z-90 North West (NW)

- - No Action Current Cell

Table 4.1: Module Local Rules; the rule highlighted in blue is illustrated in Figure 4.8.

As can be seen in Table 4.1, each module can have six possible pivots according to the

existence of a neighbouring module connected in the corresponding direction: North, South,

Up, Bottom, East or West. If any of those pivots exists, an action is only possible if a

corresponding support module exists in the direction of the pivot’s axis of rotation. If both of

these conditions are verified, an action is applicable to the current neighbourhood.

Actions are named according to the axis and angle of rotation of the pivot rotation. For

example, X90 represents a 90 degrees rotation of the pivot around the X axis. Similarly, Z-90

represents a -90 degrees rotation around the Z axis. Once an action is executed, the module

will move towards the corresponding target cell in the neighbourhood, carried by the pivot. To

simplify, only one module within a meta-module can move at a time and pivots can also only

carry one module. Finally, modules can also choose not to move and remain in their current cell

to allow their partner module to perform a second 90 degrees rotation.

To illustrate this rule execution process, the rule highlighted in blue in Table 4.1 can be seen

in Figure 4.8.

21

4.2. IMPLEMENTATION

Figure 4.8: Rule X90with a North Pivot: (1.) If there is a connected pivot in the North cell and (2.) at

least one support module on the pivot’s X axis then (3.) action X90 is applicable. (4.) The

Pivot will rotate the module to the Upper North cell.

Before an action can be executed, one final applicability check is performed for eachmatched

rule from two aspects: collision avoidance and connectivity. Collision avoidance verifies if the

target cell and all transition cells where the module will pass through on its way to the target

cell are empty. If any of those are occupied, a collision will occur so the rule is removed from the

possible rules. Connectivity checks if a module action will cause the robot to split in two. If so,

the rule is also removed from the possible rules.

In the end, all applicable rules for a given local neighbourhood are stored. If no rule applies,

the module will not move. If only one rule applies, the module will execute the corresponding

action. If more than one rule applies, the corresponding actions will undergo a selection process

based on the structural analysis and fitness of the resulting configurations to chose the action

to be executed. This process is illustrated in Figure 4.9.

Figure 4.9: Action Selection process based on analysis and fitness of the resulting configurations

4.2.3. Action Analysis and Fitness

Each module action results in a different configuration. If more than one rule applies, all of

those possible configurations will have different corresponding fitnesses. We evaluate the

fitness of each action based on three fitness criteria: (1) convergence towards the given target

configuration, (2) stability of the overall assembly, or (3) the structural performance of the

assembly.

Convergence

The Convergence fitness calculates if a module action will cause the module to move closer or

farther away from its own goal position in the assembly. In an ideal self-reconfiguration

planning sequence, if more than one path is possible, the best one is the one that minimizes

the amount of steps modules need to take to reconfigure from an initial configuration to a final

goal configuration. Similarly, if more than one rule applies, the most convergent action is the

22

4.2. IMPLEMENTATION

one that brings the module closer to its goal.

In the developed robotic system, assembly sequence and convergence are achieved

through attraction gradients. When the system is initialized, one of the modules located next

to an empty goal position will be selected to act as the Seed, emitting a virtual scent gradient

which will be propagated throughout the modules. This is represented by a numeric value that

gradually decreases the further away a module is from the source (i.e. the Seed), as illustrated

in Figure 4.10. Using the scent values propagated throughout the modules as reference, a

moving module can calculate if a given action will result in an increase or decrease of its own

scent value. Convergence is achieve by following the scent gradient back to the source, which

will bring the module towards the empty goal position. Once this happens, a new Seed will be

selected and a new scent gradient will be propagated to attract other modules. For one

meta-module, two consecutive Seeds will always be selected next to each other.

Figure 4.10: Attraction Gradients: The Seed module propagates a ”scent” value that points modules

towards the location of an unfilled goal position. Each time amodulemoves, it’s own scent

value is updated according to the gradient.

Stability

The Stability fitness calculates the stability of the overall robotic structure. Stability is calculated

using a similar analysis method as Ünsal et al. (2000). First, the center of gravity of the entire

robot is calculated as the average between the center of gravity of all modules in the assembly

and projected onto ground plane. If the projected point falls within the area corresponding to

the stationary footprint of the robot, the assembly is considered stable; if not, it is considered

unstable. For configurations with only one support area, the stationary footprint area of the

robot corresponds to the area where stationary modules are in contact with the ground. For

configurations with more than one support area, it also considers the projected ’shadow’ area

between the supports (see Figure 4.12).

For the selection process, we also implemented a safety threshold. Before reaching the point

of instability, if the center of gravity of the robot falls too close to the boundary of the footprint

area of the robot, the resulting axial forces might cause the structure to form a hinge and fall.

Thus, we use a safety threshold factor to uniformly reduce the footprint area of the robot on all

sides. This divides the area into three zones: the safe and stable zone, the threshold zone and

the unstable zone. If during the course of a module move, the center of gravity of the robot falls

within the safe and stable zone (light grey area in Figure 4.11), the assembly proceeds according

to convergence. If it falls within the threshold zone (dark grey area in Figure 4.11), the action is

accepted but a subsequent corrective action that maximizes stability becomes necessary. This

is done by choosing the action that minimizes the distance between the center of gravity of

the robot and the center of the footprint area (distance d in Figure 4.11). As a result, the chosen

action is the one that best counterbalances theweight distribution of the robot. Lastly, all actions

that fall into the unstable zone are eliminated.

23

4.2. IMPLEMENTATION

Figure 4.11: Stability Analysis: If the projected center of gravity of the robot falls within the safe and

stable zone (light grey area), the assembly is stable. If it falls within the threshold zone

(dark grey area), the assembly is stable but approaching instability; a corrective action is

needed. If it falls in the unstable zone (i.e. outside of the footprint area of the robot), the

assembly is unstable.

Figure 4.12: Footprint Area of the robot for configurations with two or more support areas.

Structural Performance

The assembly’s structural performance was analyzed with Karamba3D. To do that, Unity

encodes and sends the robotic assembly’s geometric data, i.e. module coordinates, size and

active connections, over to Grasshopper via the established UDP connection, which receives

that information and uses it to build a simplistic analytical model. This model is represented

with nodes as module centers and aluminium beams as connections between modules. Each

node has a point load representing module self-weight, assumed to be 500g for each module,

and modules touching the ground plane are considered support nodes. The support nodes have

all of their translation and rotational DoFs fixed for analysis purposes. This analytical model is

illustrated in Figure 4.13.

24

4.2. IMPLEMENTATION

Figure 4.13: Analytical model for Structural Analysis

Using the described analytical model, Karamba calculates the deflection model for the

assembled structure and the nodal displacement for each module, which was the chosen

fitness for structural feedback. Nodal displacement is representative of the bending of the

structure, which, when big enough, can cause excessive stress on modules’ connectors. Once

calculated, the maximum nodal displacement between all modules is sent back to Unity. Since

each module action represents a different resulting geometric configuration, the nodal

displacements of the different actions can be compared to find the action with the best

performance, i.e. the smaller displacement.

However, not all nodal displacements are problematic. Small nodal displacements are unlikely

to cause too much stress in the structure and for that reason, like with the stability analysis, a

safety threshold and a danger threshold were implemented. If the maximum nodal displacement

falls under the safety threshold, the assembly proceeds according to convergence; if it falls over

the safety threshold but under the danger threshold, a corrective action that minimizes nodal

displacement is needed. All actions that fall over the danger threshold are eliminated.

4.2.4. Action Selection

As we saw in the previous sections, we have three fitness criteria that modules need to consider

when choosing an action. Choosing which fitness to prioritize depends on the calculated values

of the different fitnesses and whether they fall within their respective thresholds. Actions that

maximize convergence are preferable for a quicker and more efficient self-reconfiguration

process. However, always seeking the most convergent actions can cause the structure to

break or become unstable if no structural factors are considered. In those cases, convergence

must be sacrificed for a safer and more stable assembly. This is done through the thresholds.

An action that maximizes convergence and falls under the stability and nodal displacement

thresholds will always be preferred. If that is not possible, actions that fall over the safety

threshold are still allowed but require an immediate corrective action to counterbalance the

loss of performance. Actions considered unstable or dangerous for structural performance are

disregarded altogether. Table 4.2 shows how priorities for corrective actions are chosen

according to the calculated fitnesses.

25

4.3. SUMMARY

DISPLACEMENT

STABILITY

UNDER THRESHOLD OVER THRESHOLD

UNDER THRESHOLD Maximize Convergence Maximize Stability

OVER THRESHOLD Minimize Nodal Displacement

(1) Maximize Stability;

(2) Minimize Nodal Displacement

Table 4.2: Priority Selection

4.2.5. Rigid-body Simulations

To simulate the behaviour of the robotic assembly under the action of gravity and validate the

stability calculations of the structure, Unity’s physics engine was used. Unity uses rigid-body

dynamics to study the movement of interconnected rigid-bodies under the action of external

forces. Bodies are assumed to be rigid and not deform under applied loads, which simplifies

computationally expensive calculations and produces faster results without significant loss of

accuracy (Kao et al., 2017).

Using this method, modules are assumed to be rigid-bodies with negligible deformation,

bonded together by joints. For simulation purposes, modules have a static and dynamic surface

friction coefficient of 1.05 and 1.4 respectively, i.e. the coefficients for aluminium, and joints

between modules have a break Force and Torque of 500N. The ground surface is assumed to be

solid and flat; uneven and obstacle-ridden environments were not considered in the scope of

this thesis.

4.3. SUMMARY

In this chapter, we went over the methodology and implementation details of the developed

robotic system and structurally-driven self-reconfiguration strategy. In the following chapter, we

will go over the results of this strategy.

26

Chapter 5

Results

In order to evaluate the developed self-reconfiguration strategy, we studied the target shape and

assembly sequence. The results will be showed in the following sections.

5.1. GOAL SHAPE OPTIMIZATION

If the robot encounters an unexpected obstacle that requires load-bearing capacity, it might have

to reconfigure into a configuration capable of handling these loads. For that, instead of having a

set of pre-programmed configurations that the robot can morph into, it’s better if the robot can

dynamically adapt its shape to specific on-site conditions. With topology optimization, the goal

shape itself is irrelevant; what matters is its ability to carry the loads and the global stiffness of

the system. This allows the robot to formulate a configuration that would best fit a given task.

Revisiting the bridge example previously shown in Figure 4.2, consider a situation where the

robot needs to build a bridge structure capable of carrying a single person across a gap. For

that, we need a boundary domain, the support conditions and a loading condition. The

boundary domain is given by a general geometry that defines the available unobstructed space

where the structure can grow. The support conditions are defined by two areas within the

boundary domain with a gap of 2m between them. In an on-site situation, these areas could be

defined according to local information and terrain conditions. The applied load for this example

corresponds to the weight of a single person (80kg or 0.78kN) in order to build a structure

capable of supporting one person. Figure 5.1 shows the evolution of the goal shape during the

topology optimization, where unnecessary modules are gradually discarded from the structure

until only the most essential modules for structural stiffness remain. Within ten iterations, an

acceptable solution can be found.

27

5.1. GOAL SHAPE OPTIMIZATION

Figure 5.1: Evolution of the Goal shape during the Topology Optimization: 1. Given boundary and

load conditions; 2. First iteration; 3. Second iteration; 4. Third iteration, 5. Fifth iteration;

6. Tenth iteration.

Ultimately, the topology optimization only gives us a general optimized shape designed to

deal with specific load and boundary conditions. It does not necessarily guarantee a good

performing structure. For that, we need to make sure that the performance of the resulting

shape is adequate for the expected use. This final verification was done with Karamba.

One important factor in this performance is the solid/void ratio of the topology

optimization, i.e. how much material (modules) should be distributed in the boundary domain.

If too few modules are used, the structure will be fragile and likely break under the expected

load. Conversely, using too many modules is both impractical and can overload modules at the

bottom of the structure with self-weight alone. Ideally, we should find the balance between the

number of modules and the resulting performance. Figure 5.2 shows how the solid/void ratio

and, consequently the number of modules, can impact the assembly’s structural performance.

Overall, to build a bridge capable of supporting one person spanning 2m and with a width of

0.6m, structures with a thickness of less than two layers of modules proved to be too brittle to

support the expected loads.

28

5.2. RECONFIGURATION SEQUENCE

Figure 5.2: Solid/void ratio variations: a) 20%, corresponding to 608 modules, b) 30%,

corresponding to 1184 modules, c) 50%, corresponding to 1632 modules. The image on

the left shows the structure’s deflection; the image on the right shows the displacement of

each module.

Once an acceptable target shape is found, the target coordinates of the goal solution are

sent to the modules to start the reconfiguration process.

5.2. RECONFIGURATION SEQUENCE

Figure 5.3: Initial and Target Configuration

To evaluate the proposed self-reconfiguration strategy, let us consider the transition from an

initial compact configuration to a smaller-scaled bridge configuration (see Figure 5.3), obtained

using the method explained in the previous section. This shape was obtained using a smaller

domain space, support areas spaced by 0.4m between them and a 15kg load. The resulting

shape is made of 56 modules.

Once the reconfiguration process is initialized, all modules will check their own position

according to the list of target cell coordinates and update their own state according to the

initial conditions. All modules already located in a goal position will update their state to Final

29

5.2. RECONFIGURATION SEQUENCE

and will not move anymore. All other modules, will update their own state to Inactive. From

among the modules in their Final state, one of the ones next to an empty goal position will then

be selected as the Seed module and propagate a scent value that will inform nearby modules of

the presence and proximity of an unfilled goal position. Finally, the farthest two Inactive

modules from the Seed, i.e., the modules with the lowest scent value, will be selected as a

meta-module of two modules and will update their state to Active to start moving.

Figure 5.4: System Initialization andModule States

Figure 5.5: Scent Propagation: The red Seed module represents the origin of the virtual scent. The

further from the Seed, the lower modules’ scent values are.

Once the reconfiguration process starts, modules in the meta-module will alternate in

choosing an action to execute. To do that, they will check their current local neighbourhood to

determine the applicable rules and possible actions, as explained in section 4.2.2. Each of these

actions will result in a different configuration and corresponding fitness. For example, for the

left-most module in the meta-module, Figure 5.6 shows the possible actions and corresponding

calculated fitnesses of these actions.

In this example, all actions result in stable configurations and negligibly small nodal

displacements that fall under their respective safety thresholds so actions are chosen according

to convergence. Both action X90 and Z90 result in positive convergence, i.e. the module

getting closer to the Seed. However, action Z90, causes the module to move outside of the

range of its meta-module partner so action Z90 is disregarded to prevent meta-module

separation. Thus, action X90 is the clear winner for this configuration. In case there is more

than one best action with the same convergence fitness (see Figure 5.7), one of them will be

randomly selected. Action ’No Action’ is only selected when no other action has a better or

same performance. Figure 5.8 shows a sequence of selected actions taken for a meta-module

to reach the Seed and, consequently, their respective goal positions.

30

5.2. RECONFIGURATION SEQUENCE

Figure 5.6: Module actions and corresponding fitnesses.

Figure 5.7: Moduleactions resulting in the samebest convergence fitness. Bothactionsare equally

valid but only one of them will be randomly selected.

31

5.2. RECONFIGURATION SEQUENCE

Figure 5.8: AMeta-module reconfigurationSequence: As previously explained, moduleswill alternate

actions to move forward and reach the Seed. For the two modules in the meta-module, two

consecutive Seeds will point towards two unfilled goal positions right next to each. Once

both modules reach their final goal positions, a new meta-module will be chosen.

As the assembly grows, it eventually reaches a point where the structural performance of

the assembly starts to approach structural failure, i.e. the calculated fitnesses fall over the

established safety thresholds for nodal displacement and stability. At this point if the robot

were to continue building without any structural considerations, the structure would

eventually fail before reaching its target configuration (see Figure 5.9).

32

5.2. RECONFIGURATION SEQUENCE

Figure 5.9: Structural Failures: A - Displacement failure: the maximum displacement of the structure

is over the given Danger Threshold, i.e. the equivalent of half a module (2.5cm), which can

put excessive stress on the modules’ connectors and can cause them to break; B - Stability

Failure: the structure became unstable, which caused it to topple

Unfortunately, while the proposed strategy is successful in preventing the structure from

ever reaching structural failure, it also prevents the structure from reaching the target

configuration since convergence and structural performance are opposite goals in this bridge

example. In order to build the bridge, modules need to build a large cantilever whose structural

performance only worsens as the cantilever gets longer. As a result, when the structure reaches

the safety thresholds, modules will try to compensate for the declining performance by

choosing actions opposite to the direction of the cantilever, preventing the structure from

finishing.

If we only consider the stability of the structure, the order of assembly of the modules into

their goal positions is actually a major factor in achieving a complete and stable reconfiguration

sequence. By prioritizing reaching the other side of the bridge with a small arm of modules, the

robot can find support for stability on the other side while most of its weight still rests on the

initial side of the bridge. Once the gap is bridged, other modules can then start widening the

bridge and distributing the weight of the robot between the two supported sides. In the

developed robotic system, this is achieved by driving Seed selection to prioritize unfilled goal

cells in the direction of the gap first. The rule selection strategy then makes sure that no

intermediate configurations, i.e. the paths modules take, compromise the stability of the

assembly. This sequence is illustrated in Figure 5.12.

This approach, while stable, does not solve the bending problem which is still unsolved in

developed system. If the arm is too thin, the weight of the cantilever will cause the structure to

bend and the resulting stress in the module connectors might cause them to break before the

assembly reaches the other side. To solve this, a reinforcement strategy would be needed in

addition to the stable approach, where modules are gradually recruited to reinforce the

suspended cantilever and relieve the stress in the overstrained modules until the structure

reaches the other side. The idea behind this strategy is explained in Figure 5.10. To implement

this, increasing the redundancy of modules in the robot might be needed to allow spare

modules to take care of structural support, i.e., additional weight for stability and

reinforcement of overstrained modules

33

5.2. RECONFIGURATION SEQUENCE

Figure 5.10: Reinforcement strategy to reduce structural bending.

Figures 5.11 and 5.12 show different reconfiguration sequences according to different

fitness criteria: 1) convergence, and 2) convergence and stability, respectively. A

reconfiguration sequence that could achieve all of the above as well as adapt and compensate

for the declining performance of the modular bending would still be need to be implemented to

successfully build the bridge example.

Finally, sometimes a module moving into its final goal position will cause it’s state to shift to

Final while the partner module is in a position from which it cannot move alone or reach its own

final goal position (see Figure 5.13). When that happens, because the settled module will not

move anymore to help the module left behind move to its goal position, the module becomes

stranded. This means that it will stop in place and act as a temporary Seed while a new meta-

module is chosen and attracted towards the stranded module.

When the new meta-module reaches the stranded module, the stranded module will join

it to form a meta-module of three modules and all three modules will coordinate to reach the

original Seed. Most of the times, this strategy is successful in rescuing the stranded module.

Other times, new stranded modules are born from the difficult coordination between the three

modules and separation of the meta-module. This is another obstacle to convergence which

prevents the reconfiguration from being completed. More work needs to be done to solve this

problem and eliminate the occurrence of stranded modules entirely.

Figure 5.13: A StrandedModule is caused by a module reaching its goal position while it’s partner

module is in position from which it cannot move.

34

5.2. RECONFIGURATION SEQUENCE

Figure 5.11: Reconfiguration sequenceaccording toConvergence. In reality, the structurewould not

be able to grow past step 8 without breaking and step 9 without toppling (see structural

failures in Figure 5.9).

35

5.2. RECONFIGURATION SEQUENCE

Figure 5.12: Reconfiguration sequence according to Convergence and Stability. This sequence

remained stable throughout the assembly but would still face issues regarding structural

bending, which would cause it to break after step 5.

36

5.3. DISCUSSION

Figure 5.14: A new meta-module rescuing a stranded module and failing to do so. The stranded

meta-modules is represented in purple

5.3. DISCUSSION

The approach used in this research relies on a distributed self-reconfiguration strategy based on

local motion rules and structurally-driven action selection with a centralized analysis workflow

to calculate global structural performance of both the target and intermediate configurations.

Regarding the target configuration, a topology optimization allows the robot to formulate a

target shape for specific local conditions and loads. With the help of sensors and camera

modules, this information could be collected from the surrounding environment to map areas

for the robot to use. The obtained shape does not have to be the best shape for a specific task

but a minimum requirement of structural robustness is needed for the structure to be built and

stand on its own. This verification was done with a FEA, where the number of modules needed

to achieve a robust structure could be determined for the obtained shape.

Regarding the reconfiguration sequence, while the proposed strategy succeeds in

preventing the structure from ever reaching structural failure by analyzing every reachable

intermediate configuration of a module, filtering out dangerous or unstable configurations, and

warning the robot when it approaches dangerous configurations, it fails to adapt when

structural performance and convergence are opposite goals. The corrective measures in this

case are not effective in dealing with the declining performance.

It turned out to be more difficult than anticipated to achieve both convergence and the

desired global structural behaviour using only local decision-making. Considering just the next

local action and resulting configuration as the driving force of decision-making turned out to be

too limited of a scope to achieve a complete and efficient reconfiguration process for all three

performance criteria: convergence, stability and nodal displacement. When considering the

stability of a structure, the positioning of modules in the configuration and the weight

distribution of the assembly as a whole play a major role in achieving stable configurations. It is

therefore difficult to plan the reconfiguration sequence of a complete and stable target

configuration on a purely local scale.

Regarding the bending of the structure and modules’ nodal displacement, a localized

reinforcement strategy could be used to temporarily relieve the stress in overstrained modules

and support the cantilever until it reaches the other side. Future work should address all three

of these criteria to successfully build structurally-driven assemblies.

The analysis workflow of structural performance based on the exchange between different

software, Unity and Grasshopper, was adequate as a proof of concept to analyze and simulate

the behaviour of the robotic assembly but ended up significantly slowing down the

reconfiguration process. Each configuration calculation (i.e. sending the geometric information

to Grasshopper, calculating the structural performance with Karamba and returning the

feedback to Unity) takes averagely 160ms per configuration. When each module has between

2 to 7 possible actions and resulting configurations to analyse, this process can take up to

37

5.3. DISCUSSION

1.12s per module motion. This becomes even more significant when we consider that a

complete reconfiguration sequence for 56 modules can take on average 27 module motions

per module. Implementing an integrated and simplified analysis method to measure structural

performance could significantly improve the performance of the system.

38

Chapter 6

Conclusion

This research addresses the structural requirements for building robotic assemblies of modular

robots with SRRs. It proposes a structurally-driven control strategy for a SRR system based on the

structural analysis and performance of the robotic configurations, both target and intermediate

during self-reconfiguration.

Using topology optimization, the target structure is evolved to obtain a structurally feasible

target shape that responds to specific boundary and loading conditions. Once a suitable target

configuration is found, the distributed control strategy drives the modules’ action selection

process based on the fitnesses of the resulting robotic configurations according to

convergence, stability and modules’ nodal displacement. A safety threshold is implemented for

both the assembly’s stability as well and modules’ nodal displacement to inform the robot of

approaching unstable or dangerous configurations and allow it take the necessary corrective

actions to compensate for the declining performance as needed. An instability and danger

thresholds are used to filter out actions that result in unstable and overly deformed

configurations from the reconfiguration sequence entirely.

Unfortunately, the control strategy used fails to adapt when structural performance and

convergence are opposite goals and corrective measures to fix declining performances are

ineffective. Making sure that both target and intermediate configurations are safe and stable

does not guarantee the emergence of a structurally-feasible complete reconfiguration

sequence. A alternative reinforcement strategy where modules are gradually recruited to

relieve the stress in overstrained modules was proposed but still needs to be tested for

feasibility and effectiveness.

Moreover, the reconfiguration sequence still faces some problems with modules becoming

stranded due to the unsuccessful module coordination in meta-modules, which reduces the

efficiency of the overall self-reconfiguration algorithm. Finally, the analysis workflow can be

improved by implementing an integrated structural analysis method that modules can quickly

perform without sacrificing performance. Future work would need to fix all of these issues to

more efficiently drive the self-reconfiguration process to build structurally-driven assemblies.

Using local decision-making to solve global structural issues can be challenging and more

research needs to address this in order to build structurally-sound robotic assemblies. This

thesis only scratches the surface on this issue but addresses some important structural

requirements for building these structures and extends the state-of-art on structurally-aware

SRRs. In the future, these would need to be developed on a larger scale in order to operate at

the architectural scale.

39

Bibliography

Hossein Ahmadzadeh and EllipsMasehian. Modular robotic systems: Methods and algorithms for

abstraction, planning, control, and synchronization. Artificial Intelligence, 223:27–64, 2015.

José Baca, Prithvi Pagala, Claudio Rossi, and Manuel Ferre. Modular robot systems towards the

execution of cooperative tasks in large facilities. Robotics and Autonomous Systems, 66:159–

174, 2015.

Martin Philip Bendsoe and Ole Sigmund. Topology optimization: theory, methods, and applications.

Springer Science & Business Media, 2013.

Sebastian Białkowski. topos, 2020. URL https://www.food4rhino.com/app/topos.
Accessed: 2020-08-24.

H. Bojinov, A. Casal, and T. Hogg. Multiagent control of self-reconfigurable robots. Artificial

Intelligence, 142(2):99–120, 2002.

Julien Bourgeois, Benoit Piranda, Andre Naz, Nicolas Boillot, HakimMabed, Dominique Dhoutaut,

Thadeu Tucci, and Hicham Lakhlef. Programmable matter as a cyber-physical conjugation.

In 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pages 002942–

002947. IEEE, 2016.

Alberto Brunete, Avinash Ranganath, Sergio Segovia, Javier Perez de Frutos, Miguel Hernando,

and Ernesto Gambao. Current trends in reconfigurable modular robots design. International

Journal of Advanced Robotic Systems, 14(3), 2017.

Zack Butler, Keith Kotay, Daniela Rus, and Kohji Tomita. Generic decentralized control for lattice-

based self-reconfigurable robots. The International Journal of Robotics Research, 23(9):919–937,

2004.

Andres Castano, Wei-Min Shen, and Peter Will. Conro: Towards deployable robots with inter-

robots metamorphic capabilities. Autonomous Robots, 8(3):309–324, 2000.

Andres Castano, Alberto Behar, and Peter M Will. The conro modules for reconfigurable robots.

IEEE/ASME transactions on mechatronics, 7(4):403–409, 2002.

S Chennareddy, A. Agrawal, and A. Karuppiah. Modular self-reconfigurable robotic systems: a

survey on hardware architectures. Journal of Robotics, 2017, 2017.

Gregory S Chirikjian. Kinematics of a metamorphic robotic system. In proceedings of the 1994

IEEE International Conference on Robotics and Automation, pages 449–455. IEEE, 1994.

David Johan Christensen. Evolution of shape-changing and self-repairing control for the atron

self-reconfigurable robot. Proceedings 2006 IEEE International Conference on Robotics and

Automation, 2006. ICRA 2006, pages 2539–2545, 2006.

40

https://www.food4rhino.com/app/topos

BIBLIOGRAPHY

David Johan Christensen and Kasper Stoy. Selecting a meta-module to shape-change the atron

self-reconfigurable robot. In Proceedings 2006 IEEE International Conference on Robotics and

Automation, 2006. ICRA 2006., pages 2532–2538. IEEE, 2006.

David Johan Christensen, Esben Hallundbok Ostergaard, and Henrik Hautop Lund. Metamodule

control for the atron self-reconfigurable robotic system. In Proceedings of the the 8th Conference

on Intelligent Autonomous Systems (IAS-8), pages 685–692. Citeseer, 2004.

David Johan Christensen, Jens Christian Andersen, Mogens Blanke, Lidia Furno, Roberto Galeazzi,

Peter Nicholas Hansen, and Mikkel Cornelius Nielsen. Collective modular underwater robotic

system for long-term autonomous operation. In ICRA Workshop on Persistent Autonomy for

Aquatic Robotics: the Role of Control and Learning in Single and Multi-Robot Systems, 2015.

Jay Davey, Ngai Kwok, and Mark Yim. Emulating self-reconfigurable robots-design of the smores

system. In2012 IEEE/RSJ International Conference on Intelligent Robots andSystems, pages 4464–

4469. IEEE, 2012.

Scott Davidson. Grasshopper, 2020. URL https://www.grasshopper3d.com/.
Accessed: 2020-08-13.

Toshio Fukuda and Yoshio Kawauchi. Cellular robotic system (cebot) as one of the realization of

self-organizing intelligent universal manipulator. In Proceedings., IEEE International Conference

on Robotics and Automation, pages 662–667. IEEE, 1990.

Toshio Fukuda and Seiya Nakagawa. Dynamically reconfigurable robotic system. In Proceedings.

1988 IEEE International Conference on Robotics and Automation, pages 1581–1586. IEEE, 1988.

Kyle Gilpin, Keith Kotay, Daniela Rus, and Iuliu Vasilescu. Miche: Modular shape formation by

self-disassembly. The International Journal of Robotics Research, 27(3-4):345–372, 2008.

Seth Copen Goldstein, Jason D Campbell, and Todd C Mowry. Programmable matter. Computer,

38(6):99–101, 2005.

L. Jinguo, Z. Xin, andH. Guangbo. Survey on research and development of reconfigurablemodular

robots. Advances in Mechanical Engineering, 8(8), 2016. doi: 10.1177/1687814016659597.

Morten Winkler Jorgensen, Esben Hallundbk Ostergaard, and Henrik Hautop Lund. Modular

atron: Modules for a self-reconfigurable robot. In 2004 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566), volume 2, pages 2068–2073.

IEEE, 2004.

Akiya Kamimura, Haruhisa Kurokawa, E Toshida, Kohji Tomita, SatoshiMurata, and Shigeru Kokaji.

Automatic locomotion pattern generation for modular robots. In 2003 IEEE International

Conference on Robotics and Automation (Cat. No. 03CH37422), volume 1, pages 714–720. IEEE,

2003.

Gene T.C. Kao, Axel Körner, Daniel Sonntag, Long Nguyen, Achim Menges, and Jan Knippers.

Assembly-aware design of masonry shell structures: a computational approach. In Proceedings

of the IASS Annual Symposium2017, volume 23, pages 1–10. International Association for Shell

and Spatial Structures (IASS), 2017.

Karamba3D. Karamba3d, 2020. URL https://www.karamba3d.com/. Accessed: 2020-

08-24.

Michihiko Koseki, Kengo Minami, and Norio Inou. Cellular robots forming a mechanical structure

(evaluation of structural formation and hardware design of “chobie ii. In in Distributed

Autonomous Robotic Systems. Citeseer, 2004.

41

https://www.grasshopper3d.com/
https://www.karamba3d.com/

BIBLIOGRAPHY

Keith Kotay and Daniela Rus. Efficient locomotion for a self-reconfiguring robot. In Proceedings

of the 2005 IEEE International Conference on Robotics and Automation, pages 2963–2969. IEEE,

2005.

Keith Kotay, Daniela Rus, Marsette Vona, and Craig McGray. The self-reconfiguring robotic

molecule. In Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat.

No. 98CH36146), volume 1, pages 424–431. IEEE, 1998.

Keith D Kotay and Daniela L Rus. Motion synthesis for the self-reconfiguring molecule. In

Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations

in Theory, Practice and Applications (Cat. No. 98CH36190), volume 2, pages 843–851. IEEE,

1998.

Keith D Kotay and Daniela L Rus. Algorithms for self-reconfiguring molecule motion planning.

In Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS

2000)(Cat. No. 00CH37113), volume 3, pages 2184–2193. IEEE, 2000.

Haruhisa Kurokawa, Satoshi Murata, Eiichi Yoshida, Kohji Tomita, and Shigeru Kokaji. A 3-

d self-reconfigurable structure and experiments. In Proceedings. 1998 IEEE/RSJ International

Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat.

No. 98CH36190), volume 2, pages 860–865. IEEE, 1998.

Haruhisa Kurokawa, Kohji Tomita, Akiya Kamimura, Eiichi Yoshida, Shigeru Kokaji, and Satoshi

Murata. Distributed self-reconfiguration control of modular robot m-tran. In IEEE International

Conference Mechatronics and Automation, 2005, volume 1, pages 254–259. IEEE, 2005.

Rus Robotics Laboratory. Crystal robot, 2000a. URL https://groups.csail.mit.edu/
drl/modular_robots/crystal/crystal.html. Accessed: 2020-08-09.

Rus Robotics Laboratory. Molecule robot, 2000b. URL https://groups.csail.mit.
edu/drl/modular_robots/molecule/molecule.html. Accessed: 2020-08-09.

Jens Liedke, Rene Matthias, Lutz Winkler, and Heinz Wörn. The collective self-reconfigurable

modular organism (cosmo). In 2013 IEEE/ASME International Conference on Advanced Intelligent

Mechatronics, pages 1–6. IEEE, 2013.

NathanMelenbrink, Paul Kassabian, AchimMenges, and JustinWerfel. Towards force-aware robot

collectives for on-site construction. In DISCIPLINES & DISRUPTION: Proceedings of the Annual

Conference of the Association for Computer-Aided Design in Architecture (ACADIA), volume 37,

pages 382–391. CumInCAD, 2017.

Nathan J Mlot, Craig Tovey, and David L Hu. Dynamics and shape of large fire ant rafts.

Communicative & integrative biology, 5(6):590–597, 2012.

Satoshi Murata, Haruhisa Kurokawa, and Shigeru Kokaji. Self-assembling machine. In Proceedings

of the 1994 IEEE International Conference on Robotics and Automation, pages 441–448. IEEE,

1994.

Satoshi Murata, Haruhisa Kurokawa, Eiichi Yoshida, Kohji Tomita, and Shigeru Kokaji. A 3-d self-

reconfigurable structure. In Proceedings. 1998 IEEE International Conference on Robotics and

Automation (Cat. No. 98CH36146), volume 1, pages 432–439. IEEE, 1998.

Satoshi Murata, Eiichi Yoshida, Kohji Tomita, Haruhisa Kurokawa, Akiya Kamimura, and Shigeru

Kokaji. Hardware design of modular robotic system. In Proceedings. 2000 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS 2000)(Cat. No. 00CH37113), volume 3,

pages 2210–2217. IEEE, 2000.

42

https://groups.csail.mit.edu/drl/modular_robots/crystal/crystal.html
https://groups.csail.mit.edu/drl/modular_robots/crystal/crystal.html
https://groups.csail.mit.edu/drl/modular_robots/molecule/molecule.html
https://groups.csail.mit.edu/drl/modular_robots/molecule/molecule.html

BIBLIOGRAPHY

CA Nelson, Khoa Chu, and Prithviraj Dasgupta. Modred: a modular self-reconfigurable robot

for autonomous extra-terrestrial exploration and discovery. In IEEE Planetary Rovers Workshop,

International Conference for Robotics and Automation (ICRA) 2010, 2010.

Jonas Neubert and Hod Lipson. Soldercubes: a self-soldering self-reconfiguring modular robot

system. Autonomous Robots, 40(1):139–158, 2016.

NVIDIA. Nvidia physx sdk, 2020. URL https://developer.nvidia.com/physx-sdk.
Accessed: 2020-07-13.

Ian O’hara, James Paulos, Jay Davey, Nick Eckenstein, Neel Doshi, Tarik Tosun, Jonathan Greco,

Jungwon Seo, Matt Turpin, Vijay Kumar, et al. Self-assembly of a swarm of autonomous

boats into floating structures. In 2014 IEEE International Conference on Robotics and Automation

(ICRA), pages 1234–1240. IEEE, 2014.

Esben Hallundbæk Østergaard, Kristian Kassow, Richard Beck, and Henrik Hautop Lund. Design

of the atron lattice-based self-reconfigurable robot. AutonomousRobots, 21(2):165–183, 2006.

Eckersley O’Callaghan. Mars habitat project, 2019. URL https://www.eocengineers.
com/en/news/hassell--eoc-one-step-closer-to-life-on-mars.
Accessed: 2020-07-14.

Amit Pamecha, Chih-Jung Chiang, David Stein, and Gregory Chirikjian. Design and

implementation of metamorphic robots. In Proceedings of the 1996 ASME Design Engineering

Technical Conference and Computers in Engineering Conference, volume 10. Irvine, California, USA:

ASME, 1996.

Amit Pamecha, Imme Ebert-Uphoff, and Gregory S Chirikjian. Useful metrics for modular robot

motion planning. IEEE Transactions on Robotics and Automation, 13(4):531–545, 1997.

John W Romanishin, Kyle Gilpin, and Daniela Rus. M-blocks: Momentum-driven, magnetic

modular robots. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems,

pages 4288–4295. IEEE, 2013.

Daniela Rus and Keith Kotay. Versatility for unknown worlds: Mobile sensors and self-

reconfiguring robots. In Field and Service Robotics, pages 477–484. Springer, 1998.

Daniela Rus and Marsette Vona. Self-reconfiguration planning with compressible unit modules.

In Proceedings 1999 IEEE International Conference on Robotics and Automation, volume 4, pages

2513–2520. IEEE, 1999.

David Saldana, Bruno Gabrich, Michael Whitzer, Amanda Prorok, Mario FM Campos, Mark Yim,

and Vijay Kumar. A decentralized algorithm for assembling structures with modular robots.

In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 2736–

2743. IEEE, 2017.

Behnam Salemi, Mark Moll, and Wei-Min Shen. Superbot: A deployable, multi-functional,

and modular self-reconfigurable robotic system. In 2006 IEEE/RSJ International Conference on

Intelligent Robots and Systems, pages 3636–3641. IEEE, 2006.

JungwonSeo, Jamie Paik, andMark Yim. Modular reconfigurable robotics. Annual ReviewofControl,

Robotics, and Autonomous Systems, 2:63–88, 2019.

Wei-Min Shen, Yimin Lu, and Peter Will. Hormone-based control for self-reconfigurable robots.

In Proceedings of the fourth international conference on Autonomous agents, pages 1–8, 2000.

43

https://developer.nvidia.com/physx-sdk
https://www.eocengineers.com/en/news/hassell--eoc-one-step-closer-to-life-on-mars
https://www.eocengineers.com/en/news/hassell--eoc-one-step-closer-to-life-on-mars

BIBLIOGRAPHY

Wei-Min Shen, Behnam Salemi, and Peter Will. Hormone-inspired adaptive communication

and distributed control for conro self-reconfigurable robots. IEEE transactions on Robotics and

Automation, 18(5):700–712, 2002.

Wei-Min Shen, Peter Will, and Berok Khoshnevis. Self-assembly in space via self-reconfigurable

robots. In2003 IEEE International Conference onRobotics andAutomation (Cat. No. 03CH37422),

volume 2, pages 2516–2521. IEEE, 2003.

Wei-Min Shen, Maks Krivokon, Harris Chiu, Jacob Everist, Michael Rubenstein, and Jagadesh

Venkatesh. Multimode locomotion via superbot reconfigurable robots. Autonomous Robots,

20(2):165–177, 2006a.

Wei-Min Shen, Behnam Salemi, and Mark Moll. Modular, multifunctional and reconfigurable

superbot for space applications. In Space 2006, page 7405. The American Institute of

Aeronautics and Astronautics, 2006b.

Wei-Min Shen, Harris CH Chiu, Mike Rubenstein, and Behnam Salemi. Rolling and climbing by the

multifunctional superbot reconfigurable robotic system. In AIP Conference Proceedings, volume

969, pages 839–848. American Institute of Physics, 2008.

Alexander Spröwitz, Soha Pouya, Stéphane Bonardi, Jesse Van Den Kieboom, Rico Möckel, Aude

Billard, Pierre Dillenbourg, and Auke Jan Ijspeert. Roombots: reconfigurable robots for adaptive

furniture. IEEE Computational Intelligence Magazine, 5(3):20–32, 2010.

K. Stoy, D. Brandt, and D. J. Christensen. Self-reconfigurable robots: an introduction. MIT press

Cambridge, 2010.

John W Suh, Samuel B Homans, and Mark Yim. Telecubes: Mechanical design of a module for

self-reconfigurable robotics. In Proceedings 2002 IEEE International Conference on Robotics and

Automation (Cat. No. 02CH37292), volume 4, pages 4095–4101. IEEE, 2002.

Guy Theraulaz, Eric Bonabeau, and Jean-Louis Deneubourg. The origin of nest complexity in social

insects. Complexity, 3(6):15–25, 1998.

Michael T Tolley, Jonathan D Hiller, and Hod Lipson. Evolutionary design and assembly planning

for stochastic modular robots. In New Horizons in Evolutionary Robotics, pages 211–225.

Springer, 2011.

Thadeu Knychala Tucci, Benoit Piranda, and Julien Bourgeois. A distributed self-assembly planning

algorithm for modular robots. In Proceedings of the 17th International Conference on Autonomous

Agents and MultiAgent Systems, AAMAS ’18, page 550–558. International Foundation for

Autonomous Agents and Multiagent Systems, 2018.

Cem Ünsal and Pradeep K Khosla. A multi-layered planner for self-reconfiguration of a uniform

group of i-cube modules. In Proceedings 2001 IEEE/RSJ International Conference on Intelligent

Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.

01CH37180), volume 1, pages 598–605. IEEE, 2001.

Cem Unsal, Han Kiliccote, and Pradeep K Khosla. I (ces)-cubes: a modular self-reconfigurable

bipartite robotic system. In Sensor Fusion and Decentralized Control in Robotic Systems II, volume

3839, pages 258–269. International Society for Optics and Photonics, 1999.

Cem Ünsal, Mark E Patton, Pradeep K Khosla, et al. Motion planning for a modular self-

reconfiguring robotic system. In Distributed Autonomous Robotic Systems 4, pages 165–175.

Springer, 2000.

44

BIBLIOGRAPHY

ModLab UPenn. Self re-assembly after explosion, 2009. URLhttps://www.modlabupenn.
org/2009/09/23/self-re-assembly-after-explosion/. Accessed: 2020-

07-28.

Paul J White, Michael L Posner, and Mark Yim. Strength analysis of miniature folded right angle

tetrahedron chain programmable matter. In 2010 IEEE International Conference on Robotics and

Automation, pages 2785–2790. IEEE, 2010.

Emily Jing Wei Whiting. Design of structurally-sound masonry buildings using 3d static analysis. PhD

thesis, Massachusetts Institute of Technology, 2012.

Mark Yim. A reconfigurable modular robot with many modes of locomotion. In Proc. of the 1993

JSME Conference on Advanced Mechatronics, Tokyo, Japan, 1993.

Mark Yim. Locomotion with a unit-modular reconfigurable robot. PhD thesis, Stanford University

Palo Alto, CA, 1994a.

Mark Yim. New locomotion gaits. In Proceedings of the 1994 IEEE International conference on

Robotics and Automation, pages 2508–2514. IEEE, 1994b.

Mark Yim, David G Duff, and Kimon Roufas. Modular reconfigurable robots, an approach to urban

search and rescue. In the Proceedings of the 1st InternationalWorkshop onHuman-friendlyWelfare

Robotics Systems, Taejon, Korea, 2000a.

Mark Yim, David G Duff, and Kimon D Roufas. Polybot: a modular reconfigurable robot. In

Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and

Automation. Symposia Proceedings (Cat. No. 00CH37065), volume 1, pages 514–520. IEEE,

2000b.

Mark Yim, Ying Zhang, and David Duff. Modular robots. IEEE Spectrum, 39(2):30–34, 2002.

Mark Yim, Kimon Roufas, David Duff, Ying Zhang, Craig Eldershaw, and Sam Homans. Modular

reconfigurable robots in space applications. Autonomous Robots, 14(2-3):225–237, 2003.

Mark Yim, Wei-Min Shen, Behnam Salemi, Daniela Rus, Mark Moll, Hod Lipson, Eric Klavins, and

Gregory S Chirikjian. Modular self-reconfigurable robot systems. IEEE Robotics & Automation

Magazine, 14(1):43–52, 2007a.

Mark Yim, Babak Shirmohammadi, Jimmy Sastra, Michael Park, Michael Dugan, and Camillo J

Taylor. Towards robotic self-reassembly after explosion. In 2007 IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 2767–2772. IEEE, 2007b.

Eiichi Yoshida, Satoshi Murata, Haruhisa Kurokawa, Kohji Tomita, and Shigeru Kokaji. A

distributed reconfiguration method for 3d homogeneous structure. In Proceedings. 1998

IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice

and Applications (Cat. No. 98CH36190), volume 2, pages 852–859. IEEE, 1998.

Eiichi Yoshida, Shigeru Kokaji, SatoshiMurata, Haruhisa Kurokawa, and Kohji Tomita. Miniaturized

self-reconfigurable system using shape memory alloy. In Proceedings 1999 IEEE/RSJ

International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots

with High Intelligence and Emotional Quotients (Cat. No. 99CH36289), volume 3, pages 1579–

1585. IEEE, 1999.

Eiichi Yoshida, Satoshi Murata, Akiya Kamimura, Kohji Tomita, Haruhisa Kurokawa, and Shigeru

Kokaji. Reconfiguration planning for a self-assembling modular robot. In Proceedings of the

2001 IEEE International Symposium on Assembly and Task Planning (ISATP2001). Assembly and

Disassembly in the Twenty-first Century.(Cat. No. 01TH8560), pages 276–281. IEEE, 2001.

45

https://www.modlabupenn.org/2009/09/23/self-re-assembly-after-explosion/
https://www.modlabupenn.org/2009/09/23/self-re-assembly-after-explosion/

BIBLIOGRAPHY

Eiichi Yoshida, Satoshi Murata, Akiya Kamimura, Kohji Tomita, Haruhisa Kurokawa, and Shigeru

Kokaji. A self-reconfigurable modular robot: Reconfiguration planning and experiments. The

International Journal of Robotics Research, 21(10-11):903–915, 2002.

Jihong Zhu and Tong Gao. Topology optimization in engineering structure design. Elsevier, 2016.

Victor Zykov, Efstathios Mytilinaios, Mark Desnoyer, and Hod Lipson. Evolved and designed self-

reproducing modular robotics. IEEE Transactions on robotics, 23(2):308–319, 2007.

46

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Objectives and Contribution
	Structure

	Self-Reconfigurable Robotic Systems
	Classification and existing Self-Reconfigurable Robotic Systems
	Chain-based Systems
	Lattice-based Systems
	Hybrid Systems

	Self-Reconfiguration
	Control of Self-Reconfigurable Robots

	Summary

	Discrete Assemblies of Modular Robots
	Structural Performance of Discrete Robotic Assemblies
	Assembly Planning of Discrete Assemblies
	Related Work on Structurally-driven Robotic-Assemblies
	Summary

	Structurally-driven Self-Reconfiguration
	Research Plan and Methodology
	Implementation
	Target Shape Optimization
	Module Design and Motion Control
	Action Analysis and Fitness
	Action Selection
	Rigid-body Simulations

	Summary

	Results
	Goal shape Optimization
	Reconfiguration Sequence
	Discussion

	Conclusion
	Bibliography

